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Introduction
The Open Quantum Institute (OQI) [1] is a multilateral governance initiative that promotes
global and inclusive access to quantum computing and the development of applications
for the benefit of humanity. As a novel science diplomacy instrument, it brings together
research, diplomacy, private sector and philanthropy stakeholders. OQI is hosted by CERN
during its pilot phase (2024-2026).

As part of its mission, one of OQI’s four main activities is focusing on accelerating
applications for humanity. While quantum computing is still in its early stages of
development and computational resources remain limited, there is an opportunity today
to join a global effort to explore potential applications of the technology that will positively
impact our society and our planet. OQI aims to fully harness the potential of quantum
computing by accelerating the development of use cases that contribute to the
achievement of the United Nations Sustainable Development Goals (SDGs) and
subsequent frameworks.

Through the support of OQI, quantum and subject matter experts from around the world
have been collaborating with UN agencies and large NGOs to explore the potential of
quantum computing to address global challenges. OQI’s use case portfolio contains a
growing number of use cases at various phases of their development. A complete
overview of this portfolio is illustrated in Figure 1. These use cases range from quantum
simulation to quantum-inspired solutions – combinatorial optimisation and machine
learning – to mainly address SDG 2 (Zero Hunger), SDG 3 (Good Health and Wellbeing),
SDG 6 (Clean Water and Sanitation), SDG 7 (Affordable and Clean Energy), SDG 12
(Responsible Consumption and Production) and SDG 13 (Climate Action).

This 2024 OQI Use Case White Paper presents 10 new use cases developed by experts
from 22 countries, who have started their work with OQI support since the publication of
the 2023 Edition [2]. Some of these use cases are inherited from the OQI incubation phase,
while others emerged from OQI’s call for ideas in the spring of this year. The development
of use case exploration will continue to be pursued, deepening both the scientific
methodology as well as the potential societal impact.
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Figure 1. OQI portfolio of active use cases relevant to the UN SDGs
Important to note that OQI has explored additional use case ideas over the past years. This chart shows only the current active use cases, i.e. that have performed substantial
development in 2024. (a) Each coloured dot represents a use case team formed by experts from multiple countries to explore the potential of quantum computing for the
SDGs. (b) These use cases are leveraging existing quantum approaches that include quantum simulation for chemistry, quantum-inspired combinatorial optimisation and
quantum-inspired machine learning (QML). (c) The use cases address real-world problems, ranging from food, health, water, energy, traceability and climate.
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SDG 2 – Zero Hunger

Plant Genomics

SHORT SUMMARY
Quantum computing solution for sustainable
agrifood system by boosting predictive design and
gene editing of plants.

TEAM ORIGINS

APPROACH
Machine Learning (quantum-inspired)

Context
The world currently faces one of the greatest challenges to humanity: providing enough
nutritious calories for a growing population, while reducing the footprint of agricultural
production on the environment. The Food and Agriculture Organisation of the United
Nations (FAO) has included as one of its top four priorities to have a better production of
food, which includes ensuring resilient and sustainable agrifood systems in a changing
climate and environment [1].

Indeed, climate change, along with economic and geopolitical instabilities that directly
affect the food supply in the most vulnerable geographies, has increased the urgency of
addressing these scientific and societal challenges. Developing countries, such as Brazil,
necessitate the optimization of agricultural output in conjunction with conserving natural
resources via improved crops and crop management systems. To tackle these challenges,
several partnerships have been created among governmental and international agencies
and organisations. For instance, the Brazil-FAO International Cooperation Programme
focuses on transforming the agri-food system in Brazil and Latin America [2].

Innovative applications of science and technology, including those in biotechnology, may
play significant roles in transforming agrifood systems [3]. Representing a recent
advancement in genetics, gene editing technology and its application to plant and animal
breeding highlights its position for contributing to improvements in various aspects of
agricultural production [4]. Gene editing allows modification of a genome with more
speed and precision than other forms of breeding. Moreover, it offers an opportunity to
address a range of difficult problems, including those associated with increasing yield
while reducing the use of natural resources and developing durable resistance to diseases,
pests and abiotic stressors. It also offers new options for developing adapted traits in
neglected and underutilised crop species.

Gene editing technology advances conventional approaches with greater speed and
accuracy for executing gene modification and gene networks leading to desired
phenotypes [5]. When the outcome of precision breeding such as gene editing equals
that of conventional breeding, the products carry the same risk profile and should be
treated equally by regulatory bodies. Regulation and safety issues are being addressed to
ensure secure and sustainable use of gene editing in agrifood [6].

In the past two decades, the convergence of technological revolutions in genomics, data
analytics and genome editing offers a unique opportunity to contribute to the global
challenge of food security [5]. To date, plant biotechnology approaches have been limited
by the lack of understanding of the molecular basis of crop performance. With the ability
to (i) produce data in target crops at a very competitive cost due to the sequencing
technological breakthroughs (ii) the opportunity to efficiently transform the data into
knowledge using the ongoing advancements in artificial intelligence technologies and (iii)
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using this knowledge to guide the highly precise modification of plant genomes using
gene editing technologies, it presents a unique opportunity for a breakthrough in crop
improvement.

Computational Challenges
Gene discovery is still a major challenge - particularly for complex traits like yield. New
approaches are needed to transform and accelerate the process, with one of the main
problems being the need for high levels of computational power to analyse the plant
genome. While the existing human reference genome structure is linear, plant genome
data is a lot more complex. The wheat genome, for example, is five times the size of the
human genome [5]. Even more critically, however, the most impactful characteristics are
driven not by one or two native genes, but by intricate networks in which many of these
genes work together. One in particular refers to pangenomes, as the complete sequences
of multiple individuals of a species or taxonomic units [7].

Pangenomics is a new domain of science. Sequence alignment algorithms involve
computing comparisons between high dimensional data – a problem known to be
computationally challenging and sometimes ill-formed due to the curse of
dimensionality. Current algorithms consume substantial time and space complexity for a
single pairwise alignment. Alignment-based searches with millions of potential sequence
pairs can therefore produce substantial bottlenecks in sequence processing workflows.

Another important challenge is related to the complexity needed to accurately and
efficiently understand the core developmental and biological processes underlying plant
complex traits [8]. As the number of genes and interactions increases, the computational
resources required to model and predict the behaviour of the genes grow exponentially.

Potential Impact of a Quantum Solution
Quantum computing could help tackle these complex computational challenges. In
particular, using sequence graph methods, it could accelerate the key processes of
mapping data to graph nodes in the pangenome and finding good routes through the
graph [9, 10, 11, 12].

In addition, quantum computers might be used to simulate the behaviour of complex
biological networks, potentially uncovering new insights into how genes interact and how
these interactions give rise to cellular behaviours [13, 14, 15]. Quantum computing could
offer novel approaches to better understand the genetic diversity, adaptation, and
evolution of species, and combined with gene editing, positively impact food security,
nutrition and environmental sustainability.
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Last-Mile Food Delivery

SHORT SUMMARY
Quantum optimisation solution to optimise last-mile
food delivery, minimising waste and costs.

TEAM ORIGINS

APPROACH
Combinatorial optimisation (quantum-inspired)

Context
Worldwide, 2.33 billion people lack regular access to sufficient nutrition, of whom 864
million are prone to periodically run out of food [1]. Despite widespread food insecurity,
one-third of the global food supply post-harvest goes to waste [2]. Nearly 40% of this waste
is accounted for by the supply chain connecting producers and retailers [3]. Food logistics,
which involves delivering agricultural products from suppliers to end customers via
retailers, is the most complex, costly, and inefficient part of the food supply chain [4].

Inefficient delivery of agricultural products has a number of consequences. Transportation
is expensive and time consuming, and goods not delivered quickly enough might perish.
Consequently, suboptimal routes result in additional fuel consumption and product loss.
This results in higher costs for farmers and higher prices for consumers. There is also an
environmental cost to this delivery from vehicle emissions: 5.3-5.8% of the global warming
potential of the agriculture industry comes from last-mile delivery. Food waste during this
stage also contributes to the 6% of greenhouse gas emissions associated with the disposal
of food waste, with the resulting pollution negatively impacting the air quality of
surrounding communities. Inefficient deliveries increase the number of vehicles on the
road and can result in overworked drivers who are more prone to causing accidents [5].

Efficient distribution of agricultural goods is particularly difficult for smallholder farmers
who cultivate less than two hectares of land. Although the role of smallholders differs
between countries, they account for more than 80% of farms worldwide and produce 35%
of the global food supply using only 10% of agricultural land [6]. These farmers typically do
not have the same transportation capabilities, market information access, and logistic
expertise accessed by larger producers [7]. These conditions limit the ability of
smallholdings to secure good prices for their products and effectively distribute them.
These producers stand to benefit the most from open-source and generalisable logistics
optimisation tools.

Scalable algorithms for determining how to best route goods have the potential to reduce
the transportation costs of farmers and manufacturers while reducing food waste and
increasing the affordability of food for consumers. This use case focuses on investigating
novel approaches to solve this problem using quantum computing.

Computational Challenges
A fundamental challenge in logistics is determining how to optimally make a set of
deliveries with a set of vehicles, which is also known as the Vehicle Routing Problem (VRP)
[8]. VRP and its variants are NP-complete, meaning it is unlikely that fast
(polynomial-time) algorithms will exist to find optimal solutions in all cases. From the
mathematical point of view, this particular optimisation problem can be defined as the
Multi-Depot Capacitated Vehicle Routing Problem with Time Windows [9]. Some last-mile
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food delivery cases can also be defined as the Capacitated Pickup and Delivery Problem
with Time Windows [10].

The VRP is a well-studied problem using several exact solution algorithms [11, 12]. For
instance, arc-based formulations of the problem use classical methods such as
branch-and-bound [13] and branch-and-cut [14] methods, while path-based formulations
of the problem use column generation [15] and branch-and-price [16] methods. All of these
approaches guarantee optimality upon algorithm convergence but suffer from
exponentially increasing computational complexity for larger instances.

As a result, in order to tackle large problems most practical solvers either employ
heuristics or are carefully tailored to the given problem. These approaches are significantly
faster, but do not have the same optimality guarantee as exact approaches. Examples of
these are classical algorithms such as local search and tabu search heuristics [17] or
modern algorithms such as Adaptive Large Neighborhood Search (ALNS) heuristics [8].
Designing a good exact solver or heuristic is usually difficult, and these problems can be
challenging even for metaheuristics [18].

Some modern approaches to solving VRP use machine learning techniques like
reinforcement learning, which can be used to train a policy that solves the VRP to
near-optimality [19]–but these methods are limited by the computational cost of dataset
generation and training.

The infeasibility of exact solvers, paired with limits in the accuracy of approximate solvers,
poses an obstacle to achieving minimal waste in complex food delivery. In addition,
solvers used in practice are usually prohibitively expensive for small companies, limiting
business efficiency and posing a financial burden; highlighting a need to develop efficient
algorithms for optimal food distribution that can minimise waste and reduce prices to
make nutritious food more accessible to consumers.

Potential Impact of a Quantum Solution
While classical heuristics for VRP are often insufficiently accurate and difficult to design,
quantum algorithms present an alternative. Quantum algorithms have shown promise for
efficiently solving complex computational problems, including VRP, in practice. However,
there is no theoretical guarantee that quantum algorithms are fast, and more research is
needed to determine if they outperform classical algorithms in practice. Present quantum
hardware is limited by qubit count, connectivity, and error rates, restricting which
quantum circuits can be implemented in practice. This poses a difficulty for testing the
scalability of many quantum algorithms, including those for solving VRP. This use case
aims at building on previous quantum algorithms for VRP to develop a repository of
solvers for last-mile supply chain optimisation as a short-term proof of concept.

Vehicle routing is an example of a constrained combinatorial optimisation problem, as
there are many practical limits on routes; such as truck capacity and delivery hours. As a
result, VRP can be represented as a Quadratic Constrained Binary Optimisation (QCBO)
problem. However, since optimisation with constraints is often difficult on quantum
computers, many techniques for solving QCBO problems convert the formulation into a
Quantum Unconstrained Optimisation (QUBO) problem. Constraints are added as penalty
terms, enforced through projective measurement into the space of valid answers, or
through post-selection of valid states.

There are already a number of QUBO formulations available for VRP and some of its
variants [9, 11]. However, the number of variables required for these QUBO formulations is
quadratic in the number of locations to be visited. This quickly becomes too large for
conventional quantum computers for large numbers of locations. As a result, we will also
investigate hybrid approaches based on classical road network graph reduction (e.g.,
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coarsening, clustering), quantum processing of the smaller instances, and different
encoding techniques aiming to reduce the required number of qubits.

There are a number of algorithms for finding the set of variables to minimise the QUBO
objective including Quantum Approximate Optimisation Algorithm (QAOA) (and its
variants) [20], Variational Quantum Eigensolver (VQE) (and its variants) [21], and Quantum
Annealing [9]. QAOA and VQE are both hybrid algorithms which use classic optimisers to
determine the parameters of the quantum circuit. Classical algorithms can also be used to
find subproblems for the quantum algorithm using graph coarsening techniques [22] or
to find good values of relaxation parameters [23].

It is expected that the hybrid approaches may accelerate the process of finding
heuristically optimal solutions for VRP, but achieving this state would be long term. In the
short term, one could develop a proof of concept of a quantum solver for finding optimal
solutions for representative but downscaled vehicle routing problems, with relatively few
vehicles (5-15) and deliveries (25-150). It is unlikely that this approach will give an
advantage over classical algorithms at this scale, but could offer empirical insight into the
scalability of quantum algorithms. This information is valuable for determining if a
quantum approach could provide an efficient, scalable, and give way to an accessible
solution for reducing waste from food delivery systems across the world.
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SDG 3 – Good Health andWell-Being

Accelerating Novel Antibacterial Discovery

SHORT SUMMARY
Quantum simulation and quantum machine
learning solution to accelerate the antibacterial
discovery and lower resistance.

TEAM ORIGINS

APPROACH
Machine Learning (quantum-inspired) and Quantum
Simulation

Context
The World Health Organization (WHO) has identified antimicrobial resistance (AMR) as
one of the top ten threats to global public health. The latest figures estimate that in 2019,
nearly five million deaths were associated with, and 1.3 million deaths attributable to,
drug-resistant bacterial infections [1]. AMR has the potential to reverse decades of
progress in fighting infectious diseases and undermine many aspects of modern
medicine. If AMR is left unchecked, its annual death toll is expected to rise considerably,
and according to some estimates could cost as much as 3.4 trillion USD to the global
economy by 2030 [2].

Despite the pressing need to develop effective treatments for drug-resistant infections,
most pharmaceutical companies have left the market to invest in more profitable areas,
producing a “market failure” that has hugely exacerbated the AMR crisis. Today, as public
and philanthropic investments attempt to overcome this failure, it is becoming
increasingly evident that addressing market dynamics alone is insufficient. Promising new
treatments often still fail to reach patients due to the lack of additional investment
required for research and development; including funding for the discovery stages of
fundamental research and preclinical work, to manufacturing and distribution capacity.
This funding gap significantly hinders the development of novel antibiotics.

The challenge we face when addressing AMR is both a public health as well as a market
failure. The greatest burden of AMR is in low- and middle-income countries with weaker
healthcare systems and a greater lack of access to effective antibiotics. If this situation is
not addressed, the continuous escalation of AMR will impinge on these health systems
even further, with the impact disproportionately felt by people of lower economic
standing, irrespective of where they live. It is a reality set to undo critical progress made
towards universal health coverage and the sustainable development goals.

GARDP’s Discovery and Exploratory programme is actively working in this discovery space
in order to tackle these interrelated challenges. By leading discovery and early-stage
research and working with relevant stakeholders from the beginning, GARDP accelerates
the timely development of new antibiotics on behalf of all populations in need [2].

The current arsenal of clinically used antibiotics has largely resulted from screening efforts
designed to identify broad-spectrum molecules that inhibit the growth of bacteria in
standard laboratory growth conditions. However, despite an impressive number of
compounds – on the order of a hundred used in the clinic – these only represent
approximately 20 major structural classes and target a narrow range of cellular processes;
namely cell envelope biogenesis, DNA replication, transcription, and protein biosynthesis.
The small range of structural and functional classes of these broad-spectrum antibiotics
has contributed to the increasing emergence and spread of resistance.
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Despite advances in academic and industrial research, there is a limited ability to predict
antibacterial activity or cellular accumulation of compounds, especially in gram negative
pathogenic bacteria [4], requiring a costly empirical approach of synthesis and testing. A
more accurate and higher throughput in-silico prediction of activity and accumulation
ahead of experimental steps could create a dramatically more efficient drug discovery
process.

Computational Challenges
Our failure to discover new antibiotics stems largely from the inability to thoroughly
investigate the vast chemical space, with the largest screens for antibiotics consisting of
only a few million molecules. This number is vanishingly small when compared to the
theoretical number of drug-like molecules (~1060) and considering that the molecules
applied in these screening programs are limited in their structural diversity.

One approach to address this involves the application of machine learning algorithms
that can predict antibacterial activity in-silico and lead to the discovery of highly
interesting and novel antibacterial compounds [3, 4]. In generative AI, models are trained
to build molecules piece by piece, assembling individual atoms and bonds into full
molecules that have user-defined properties. The challenge remains in broadening the
exploration of chemical spaces [5].

Another major hurdle is the prediction of accumulation of compounds in bacteria. This is
a problem that is fundamentally chemical, but compounds must follow the physics-based
laws of thermodynamics and classical electrodynamics in order to reach their target, with
molecular properties required for different steps in the process. For the penetration of
molecules into bacteria, physical properties such as volume, shape, electric charge, and
electric dipole play crucial roles [6]. Moreover, the statistical behaviour of these properties
is crucial [7]. One approach is to decompose the problem to the physical and chemical
parts. This procedure relies on simulating the behaviour of molecules under physiological
conditions. Molecular dynamics (MD) simulations are performed classically, while the
quantum mechanical nature of molecules and interactions is included implicitly. Going
beyond such an approach requires modelling the quantum dynamics of the molecules.

Potential Impact of a Quantum Solution
One alternative is to leverage innovative frameworks like quantum reservoir computing
(QRC). Reservoir computing is a computational framework often used for time-series
prediction and classification [8]. In its original description, it leverages a recurrent neural
network (RNN) with fixed, randomly initialised weights in its hidden layer (the “reservoir").
This is thought to simplify the training by only adjusting the output layer. The reservoir
serves as a dynamic system that projects inputs into a high-dimensional latent space,
which could assist the capturing of complex relationships and patterns. Despite being
mostly explored via the route of RNNs running on classical hardware (CPUs, GPUs),
physical systems acting as reservoirs have been explored a great deal.

QRC has the potential to explore a broader range of chemical and biological interactions
more efficiently than classical methods, while avoiding the difficulty in loading complex
data on quantum computers. Recent studies using neutral-atom quantum computers
have demonstrated the scalability, robustness, and general-purpose applicability of QRC
for time-series and classification tasks. This suggests it could be particularly effective in
predicting not only activity, but also accumulation and permeability properties in
antibacterial drug discovery.

Reservoir computing has shown to be highly useful for dynamical property prediction and
time series evolution [9, 10]. Both tasks are relevant for another major challenge in drug
discovery, namely the prediction of accumulation of compounds in bacteria. Quantum
hardware natively implements dynamics in high-dimensional Hilbert space and by
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encoding a molecule in this Hilbert space, it is natural to investigate the usage of
quantum hardware as a reservoir for molecular systems. Indeed, early studies [11, 12] have
demonstrated some promising results.

Overall, there is ample evidence to support the claim that quantum reservoir computing
is a potentially useful area of research and short-term application. Since full gate-based
operation and logical qubits are not prerequisites, QRC could be explored on modest
quantum devices that exist currently. Usage of QRC for higher throughput/accuracy
in-silico prediction of activity and accumulation holds the potential to dramatically
improve the efficacy and effectiveness of the early antibacterial drug discovery process.
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Predicting Gastrointestinal Cancer

SHORT SUMMARY
Quantum machine learning solution to improve
accuracy of gastrointestinal cancer diagnosis and
speed up medical treatment and prevention.

TEAM ORIGINS

APPROACH
Machine Learning (quantum-inspired)

Context
More than two million new cases of colorectal cancer are diagnosed every year around the
world [1, 2, 3], affecting the entire global population, in particular people above the age of
45-50. The incidence of colorectal cancer in Europe is higher in men (79 cases per 100000
people) than in women (54 per 100000). Colorectal cancer remained the second leading
cause of cancer-related deaths, accounting for 12-14% of all cancers recorded in Europe in
2012 [1], and contributes 14 billion USD to annual healthcare costs in the United States
alone. In Asia, incidence rates range from 49.3 in Japan, 24.7 in South Korea, and 35.1 in
Singapore [4], with rates equally high in many African [5] and South American countries
[6]. From the data, it is clear that colorectal cancer is a global challenge, not just a problem
in the Western world.

The World Health Organization’s (WHO) recommendations for SDG 3 target the reduction
of premature mortality from non-communicable diseases by one-third through
prevention and treatment and promoting mental health and wellbeing [3].

Current scientific breakthroughs enable the development of non-invasive, high-quality
imaging, energy-efficient and miniaturised electronic devices that can travel through the
gastrointestinal tract using natural body cavities [2]. The potential of applying non-invasive
technology to the screening of large groups in the 45-50 age group, could significantly
reduce the number of new cancer cases diagnosed each year at an advanced stage of
progression. However, to date, there are only few ingestible devices that have successfully
reached clinical practice, partly due to the novelty of the information they provide and due
to the challenges of adding this new technology to established clinical paradigms [7].

Computational Challenges
The issue of an advanced medical imaging strategy is that if successfully orchestrated, this
paradigm change would produce trillions of gastrointestinal tract images, taking an
unprecedented number of hours to process and analyse; presenting an intractable
challenge from a human resources (medical teams capable of screening and diagnosing
pathologies from manual inspection of images) and computational (high-performance
computing data centres) perspective. Despite the challenge of accessing high quality
data, medical teams could benefit from novel computational tools and methods to
increase prevention and diagnosis on a large scale, with possible support through
unconventional and highly efficient novel computational approaches. Such approaches to
image analysis could then be explored by both molecular and biologic markers to provide
insight into disease risk or onset.

Potential Impact of a Quantum Solution
Quantum computing could offer transformative potential for artificial intelligence in
medical imaging, in particular for early colorectal diagnosis, building on current scientific
computing technology and algorithms to address future challenges.

Classical machine learning strategies struggle with the computational load of analysing
billions of hours of gastrointestinal tract images, and high-performance computing
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resources are costly and consume significant power. By using quantum computing, we
could solve some complex optimisation and pattern recognition tasks more efficiently [8,
9]. This could improve efficiency in image processing and diagnosis, enabling near
real-time analysis as well as diagnosis accuracy.

In the classical approach using Convolutional Neural Networks (CNNs), both transfer
learning and ensemble learning are used. In a quantum approach, Quantum Neural
Networks (QNNs) and Quantum Support Vector Machines (QSVMs) [10] could enhance the
efficiency and accuracy of image analysis. Quantum-enhanced features space could
provide more nuanced insights from the data– perhaps even improving detection rates.
Another possibility could be to exploit Quantum Reservoir Computing (QRC), an extension
of the classical Reservoir Computing (RC) paradigm to the quantum domain intersecting
quantum computing and neural networks [11, 12].

Developing quantum algorithms specifically tailored for AI tasks and medical imaging is
complex. Ensuring reliable and accurate results from quantum computations is also a
major hurdle, especially in sensitive applications like medical diagnosis. Efficiently
encoding large medical imaging datasets into quantum states and accurately reading out
the results are not trivial tasks. Therefore, quantum data encoding methods must be
developed to handle the complexity and size of medical imaging data. Given the limited
capability of current quantum computers, this medical imaging use case could be
explored in the short term with quantum simulators, running artificial intelligence kernels
with a higher number of simulated qubits.
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SDG 6 – Clean Water and Sanitation

Water Leak Detection

SHORT SUMMARY
Quantum simulation to optimally position sensors
and detect water leaks in urban water systems.

TEAM ORIGINS

APPROACH
Combinatorial optimisation (quantum-inspired)

Context
Our planet is becoming more water-scarce. Not only is the global population, particularly
the urban population, expanding at an unprecedented rate, but climate extremes result in
droughts and flooding in many parts of the world. The ageing infrastructure to collect and
distribute water is unable to cope with such demands. By 2050, close to 70% of the world's
population will live in urban space, although 60% of that space has yet to be built [1]. Aside
from the usual urbanisation trends, migration due to climate and conflicts further
exacerbates the situation.

Along with urban development comes the need for adequate water. As a result of
increasing populations, many water supply systems are stretched to supply populations
beyond their design capacity. Such systems have often not been properly maintained and
lack the necessary investment to ensure service levels, especially amongst marginalised
groups. The increasing trend towards privatisation and commercialisation of water
services had further impacted investments by diverting funds to shareholders, rather than
maintaining the infrastructure [2]. Those most affected by lack of access to water are the
underserved communities in urban settings.

Current levels of unaccounted-for-water (UFW) are often in excess of 50% in many urban
settings [3]. This means that of the water resources that are collected and treated, at least
half is lost through leakage, system losses or illegal connections. Complex water
reticulation systems and pipe networks are difficult to monitor. Without this basic level of
measurement, interventions to manage the losses are almost impossible.

Many regions of the world are already water-scarce, but the number of countries affected
will undoubtedly increase [4], with Arab countries and many African countries severely
affected. It can be expected that many developed regions in Europe and North America
will be faced with critical “day-zero” type scenarios, which have already been experienced
in Cape Town, RSA and Sao Paolo, Brazil [5]. Currently, Mexico City is precariously close to
“day-zero” [6].

Leak detection is critical to understanding the management of water distribution
networks and is done through the provision of bulk-metering and zoning of the network.
By analysing the results on water use, in particular night-flows, it is possible to quantify
leakage losses with reasonable accuracy.
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Optimising both the position and number of metres required for any given network
impacts the ability to provide the information required to quantify losses and examine the
various scenarios for repair and rehabilitation. Current methods for metering are based on
expert judgement and experience. Having more efficient ways to determine optimum
metering would reduce initial investments significantly.

Computational Challenges
A water distribution network can be represented as an undirected graph with nodes (pipe
junctions/hydraulic installations) and edges (pipes). The dynamics of the water in the
network is typically controlled and monitored with a limited number of sensors located at
several places in the network. When a leak occurs at a specific location, there is in general
a nonlinear signature in the physical quantities (mostly pressure drop) at different
locations in the network.

In most cases, the number of sensors used for localising leaks is determined by the
number of devices available [8]. This limitation makes it essential to optimise sensor
placement to maximise the monitoring effect of these sensors on the water distribution
network. An example is given by the Philadelphia Water Department. With a large and
complex water distribution network consisting of over 3,000 miles of pipes, the
department has a limited budget for installing sensors to monitor water quality, pressure,
and flow rates [9]. The guiding principle is to place sensors with an optimal geolocation
spread in order to cover the network as much as possible.

It is, however, conceivable to imagine a more optimal placement of a potentially even
smaller number of sensors. This gives rise to considering the sensor placement as an
optimisation problem under constraints [10], where one must place an optimal number of
sensors at tactical positions. To achieve this, it is necessary to combine multiple features,
such as the topology of the water network, sensor data, leak signatures, and give other
considerations to factors such as the environmental impact in case of leakage hazards.

Optimising the sensor placement in a given water distribution network can be formulated
as a Maximum Weighted Independent Set (MWIS) problem that can be enriched by
taking into account a typical budget requirement–such as the maximum number of
sensors–and can be formulated as a quadratic unconstrained binary optimisation (QUBO)
problem. Like any combinatorial optimisation problem, the MWIS problem can be
addressed by either exact or approximate algorithms and heuristic methods.

The main bottleneck to tackle the MWIS is its combinatorial nature (NP-hard), which limits
the size of the network that can be efficiently considered. Exactly solving the MWIS
problem, especially for large and complex graphs, remains a challenging task, but
understanding the structure and properties of specific graphs can lead to solutions more
efficiently. For the optimal placement of sensors, it requires searching for approximate
high-quality solutions.

Potential Impact of a Quantum Solution
The complexity of this problem makes it a significant focus for research in quantum
computing. State-of-the-art quantum approaches to MWIS span hybrid
quantum-classical algorithms, quantum annealing (leveraging the QUBO formulation of
the problem), gate-model algorithms like Quantum Approximate Optimisation Algorithm
(QAOA), integration with classical techniques like branch-and-bound, and
quantum-enhanced machine learning.
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One quantum approach that looks particularly promising is the use of Neutral Atom
Quantum Processors, which have a unique advantage in natively embedding complex
graph-structured problems like MWIS at the hardware level, yielding a potential
advantage in terms of implementation, scalability and performance. When mapping the
water network onto a two-dimensional lattice of individual neutral atoms using optical
tweezers, each node of the graph corresponds to one atom in this array.

The first step towards solving the sensor placement problem is to use the analogue
quantum computing mode to create a set of potential solutions to the MWIS problem.
The next step involves a cost function that maximises the sum of the weights and gives at
an output the desired WMIS.

Given the analogue neutral atom quantum computing devices currently available [11, 12], it
is possible to consider a small-scale proof of concept of this optimal sensor placement
problem, and a larger-scale implementation in the mid-term plan.

While this quantum computing method is particularly suitable for applications such as
leak detection in water distribution networks, it is possible to imagine other broader
applications involving complex networks that can be modelled in the form of weighted
graphs, such as road networks or telecoms networks.
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Eliminating “Forever chemicals” FromWater Sources

SHORT SUMMARY
Quantum simulation of the decomposition of
“forever chemicals” (Poly-fluoroalkyl substances
(PFAS)) for more efficient removal in water, limiting
physiological and environmental harm.

TEAM ORIGINS

APPROACH
Quantum Simulation

Context
Poly-fluoroalkyl substances (PFAS) are synthetic chemicals ubiquitous in everyday
products, such as Teflon pans, food packaging, and water-resistant clothing [1]. Despite
their versatility, PFAS negatively impact human health and the environment. PFAS are
also known as “forever chemicals” because they persist in the environment and are
challenging to eliminate; they are even found in the human bloodstream [2]. The human
impacts are so pervasive that when 3M attempted to test the effect of PFAS on human
health in 1997, they failed to create a “control” group and could not find anyone without
PFAS in their blood, suggesting widespread exposure [3]. PFAS accumulate in the
environment and have been detected even in remote areas [4]. Even at low
concentrations, PFAS are linked to reproductive problems, immune system dysfunction,
and cancer [5]. The overarching goal of this use case is to support Good Health and
Wellbeing (Target 3.9: Reduce Illness and Death from Hazardous Chemicals and Pollution)
and Clean Water and Sanitation (Target 6.3: Improve Water Quality, Wastewater
Treatment, and Safe Reuse) [6, 7] by eliminating PFAS from water sources globally.

Although PFAS are found everywhere, water is a consistent source of exposure, consumed
and used by people every day. In a recent study, two of the most widely-used PFAS,
Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS), exceeded limits set
by the Environmental Protection Agency (EPA) in both private and public water sources
across the United States [8]. According to the EPA, there is technically no safe amount of
exposure to PFOA or PFOS. As such, the EPA’s maximum contaminant level goal for these
PFAS in drinking water is zero exposure [9].

The World Health Organization (WHO), Organization for Co-operation and Development
(OECD), and UN-Habitat tackle the harmful effects of substances like PFAS by facilitating
global information exchange, finding safer chemical alternatives, and assessing risks [10, 11,
12]. UN-Habitat has recently produced a report on treatment of wastewater [13], indicating
we are a long way off reaching the SDG 6.3.1 goal of reducing by half the proportion of
wastewater safely treated, and have not yet begun to address many of the
micro-pollutants such as PFAS. In 2024, reporting on industrial wastewater treatment
remains limited, with data only reported from 22 countries representing 8% of the global
population. In these countries, only 38% of industrial wastewater was reported as treated,
and only 27% was safely treated. Despite these coordinated efforts, there are no current
solutions that completely eliminate PFAS. Rather than putting the burden on the
individual user, removal systems installed at the water treatment plant would provide
equal access to PFAS-free water. This is especially important in underserved areas, like
developing countries, where treatment at the point of use may not be available. Domestic
treatment systems usually only address drinking water – excluding water for showers,
washing clothes and dishes, or water for lawns, pools, and gardens. Eliminating PFAS at
the source would further reduce human exposure from routes other than drinking water.

The impact of widespread PFAS exposure not only decreases overall wellbeing, but also
creates an unnecessary economic burden. The Nordic Council of Ministers estimates that
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the annual healthcare cost of PFAS exposure in Europe is €52-84 billion [14]. When
expanded globally (including remediation costs), the total societal cost of PFAS is
staggering, at €16 trillion [15]. Waste streams containing PFAS also contaminate
groundwater and negatively impact the environment. PFAS tend to bio-accumulate in
animals, acting as an additional source of human exposure [12, 16]. Destroying PFAS
instead of filtering them out into concentrated waste would eliminate the need for waste
disposal methods and increase the supply of water that can be used for consumption,
supporting the Sustainable Cities and Communities SDG. Knowledge gained from this
use case could directly inform approaches for regulatory agencies, decrease liability for
manufacturers of products with PFAS, and advance technology for mobile and
rapidly-deployable solutions to treat PFAS-contaminated water in underserved
communities.

Computational Challenges
There are several existing technologies to reduce PFAS contamination, including granular
activated carbon, ion exchange, sonochemical degradation, and reverse osmosis. As of yet,
none of these solutions completely eliminate PFAS [1, 17]. Breaking PFAS bonds is a
particularly difficult chemical challenge; PFAS have a high concentration of fluorine, the
most electronegative element. Fluorine’s powerful electronegativity causes uneven
electron clustering, resulting in a partial ionic charge; the resulting carbon-fluorine
interaction is one of the strongest single bonds in chemistry. Modelling PFAS properties
and interactions, such as reaction pathways and transition states, can help elucidate
mechanisms of enzymatic degradation. Computational modelling can also identify
materials such as adsorbents, membranes, or catalysts, which could be used to make
better treatment systems or augment existing ones. Historically, modelling PFAS
molecules computationally has been challenging due to the high number of
carbon-fluorine bonds. Each CF2 bond adds 18 valence electrons, increasing the
complexity of calculations needed to model them accurately. Using classical methods, the
largest calculations can consider up to 1012 determinants, while PFOA requires 10151
determinants to calculate its exact energy [18].

Computational chemistry modelling is accomplished via classical or quantum mechanical
methods. Classical mechanics, also known as the “force field” method, uses existing
experimental data and ab initio computation results to determine the forces acting on the
molecule. This approximates the molecule’s energy, which can be used to predict its
dynamics, reaction rates, and mechanisms. Classical methods are generally used when
the electronic information is not required to compute a specific property, or when the
system size prohibits modelling the system using the Schrödinger equation due to
computational requirements. The data and accuracy achieved with classical methods is
limited, as only quantum methods can provide structural information at the electronic
level. Post-Hartree-Fock methods can be used to include electron-electron interaction,
which is essential for bond dissociation modelling or density functional theory (DFT). The
latter reduces computation scaling by using the electronic density instead of all the
electronic degrees of freedom. Coupled-cluster theory (CCSD(T)) is the gold standard for
computational chemistry; it is more accurate than DFT, but is not feasible for large
molecules like PFAS [19].

The most accurate PFAS modelling to date was recently accomplished, using the
incremental full configuration interaction (iFCI) method [20, 21]. The iFCI method
addresses the problem of scalability by separating large molecules into smaller, more
manageable pieces. This significantly decreases the number of determinants needed for
accurate calculations. These independent molecular problems can be solved
simultaneously on distributed computing, shrinking calculation time to less than a day.
This novel application of the iFCI method creates a foundation for further research of PFAS
chemistry, using quantum methods on quantum computers.
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For such quantum solutions, there is a need to access many types of PFAS data, such as
the freely available online Data Hub for PFAS, which includes: lists of over 4,000 known
PFAS, suspected PFAS that have not been identified yet, PFAS structures and chemical
properties, a list of over 40,000 sites in the United States that are suspected sources of
PFAS, water quality data, contaminated water sources, compliance information, and PFAS
biomonitoring. Additionally, the Forever Pollution Project identifies over 23,000 confirmed
and 21,000 suspected contamination sites in Europe [22]. Despite PFAS’ presence in all
environments, global PFAS data is notably lacking.

Potential Impact of a Quantum Computing Solution
Incremental full configuration interaction molecular type of simulations could be
augmented with quantum methods to model increasingly complex PFAS molecules.
Accurate representations of PFAS, their interactions, and their respective bond
dissociation energies require information at the quantum level. Achieving this would lead
to insights on the feasibility of breaking the C-F bonds that make PFAS so challenging to
destroy, and would eventually inform paths to materials that can efficiently break the
bonds; including materials that could make up treatment systems to best sequester PFAS
for destruction. Quantum phase estimation (QPE) and/or quantum imaginary time
evolution (QITE) algorithms could be employed on quantum computers to tackle this
problem. These algorithms are preferred over variational quantum algorithms (VQAs),
such as the variational quantum eigensolver (VQE), because VQAs are prone to barren
plateaus and optimisation challenges [23]. QPE and QITE circumvent these issues by not
requiring an optimisation algorithm [24], which is necessary to augment iFCI molecular
simulations [25, 26, 27].

Alternatively, it would be possible to use a derivative of the QITE algorithm, which uses
classical information to construct operations on a quantum computer [28]. Once this is
achieved, a proof-of-concept experiment with a simplified approximation of a realistic
molecule–such as trifluoroacetic acid (TFA) to represent the family of perfluoroalkyl
carboxylic acids, or trifluoromethanesulfonic acid (TFMS) for perfluorosulfonic acids–could
be performed on near-term quantum computers. This proof of concept would be possible
to perform with today’s quantum computing hardware, paving the way in the exploration
of more efficient removal of “forever chemicals” in water.
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Molecular Docking to Clean up Pollution

SHORT SUMMARY
Quantum simulation and quantum machine
learning solution to accurately model the chemical
process of molecular docking involved in removing
organic pollutants in water/air.

TEAM ORIGINS

APPROACH
Machine Learning (quantum-inspired) and Quantum
Simulation

Context
Chemical pollutants in soil and wastewater pose a significant and long-lasting
environmental and sanitary concern, with their degradation in environmental
remediation representing a critical societal challenge. Contaminants, including pesticides,
industrial chemicals, and pharmaceuticals, present substantial risks to human health and
ecosystems [1]. Addressing this issue is crucial for ensuring environmental sustainability
and public health, aligning with several United Nations Sustainable Development Goals
(SDGs), particularly SDG 6 - Clean Water and Sanitation [2].

Among various pollutants, phenol stands out as a significant chemical contaminant
present in wastewater. There are many variants of phenol molecules with differing levels
of toxicity, many of which are classified by the WHO as dangerous in drinking water [3].
Phenol arises from petrochemical and pharmaceutical industries [4] and alongside its
vapour contains toxic compounds that can have a serious impact on health. Erosive to the
respiratory tract, skin, and eyes, it can cause pulmonary edema, tracheal ulcerations,
corneal damage, and blindness [5]. Chronic exposure can also lead to renal, liver, and heart
damage, underscoring the urgency of effective remediation strategies [6].

The impact of organic pollutants like phenol is widespread, but certain populations and
regions are more vulnerable due to socio-economic factors, geographical location, and
industrial activities. Urban populations in cities with significant industrial activities, such as
in China, India, and parts of the United States, face high levels of organic pollutants [7].
Rural areas dependent on agriculture often use pesticides and fertilisers containing
organic pollutants, leading to soil and water contamination in regions such as Southeast
Asia and Latin America, affecting both the environment and human health. Coastal
communities, such as those in Southeast Asia, the Gulf of Mexico, and the Mediterranean,
are particularly vulnerable to marine pollution from industrial discharges and agricultural
runoff, impacting fishing industries and local food supplies. Indigenous populations, often
relying on natural resources, are disproportionately affected by pollution. Areas like the
Amazon basin and the Arctic face threats from organic pollutants accumulating in the
environment, jeopardising traditional ways of life and local ecosystems [8].

The persistence of such pollutants in our environment necessitates innovative approaches
leading to more efficient and cost-effective ways for their removal and degradation.

Computational Challenges
Several techniques have been developed to degrade phenol in wastewater, each offering
unique benefits but also presenting specific limitations. Advanced Oxidation Processes
[9]–particularly photo-Fenton and heterogeneous photocatalysis–are among the most
promising methods for phenol degradation. Alternatives are electrochemical oxidation,
adsorption, and membrane filtration [10]. The downside of these methods is their high
energy costs and the need for specialised equipment. Bioremediation leverages
microorganisms to degrade phenol into less harmful products under aerobic or anaerobic
conditions [11], although slower and less effective at high phenol concentrations.

SDG Use Cases White Paper 2024 25



Computational tools, such as molecular modelling, enzyme docking, and machine
learning, can significantly accelerate the development of optimised treatment strategies.
These methods enable researchers to simulate enzyme-substrate interactions and predict
how microorganisms or catalysts interact with phenol, leading to more targeted
engineering of enzymes or catalysts for enhanced degradation. Additionally, machine
learning algorithms can analyse large datasets from treatment processes to identify
patterns and optimise operating conditions. Integrating these computational approaches,
one can reduce the reliance on trial-and-error experiments, speed up innovation, and
develop more effective solutions to the problem of phenol degradation [12].

Currently, the state-of-the-art approach in simulating enzyme docking includes a variety
of computational methods that predict how enzymes interact with substrates like phenol.
These methods range from molecular docking, which provides fast predictions of binding
modes, to more complex techniques, such as molecular dynamics (MD) simulations,
quantum mechanics/molecular mechanics (QM/MM) hybrids, and machine
learning-based approaches [13]. Molecular Dynamics (MD) [14], Quantum
Mechanics/Molecular Mechanics (QM/MM) Hybrid Methods [15] are useful to explore the
dynamic behaviour of enzymes and catalytic reactions, while De Novo Design [16]
integrates structure-based, dynamics-based, and QM-based approaches to design new
enzyme active sites capable of degrading phenol. Alternatively, Machine Learning-Based
Methods [12, 17] use algorithms trained on large datasets to predict enzyme-phenol
interactions and identify beneficial mutations.  Each of these methods offers distinct
advantages, from large-scale screening to capturing the nuanced behaviour of
enzyme-substrate interactions. However, these methods are limited by the assumptions
made during simulations, computational expense, and scalability. Despite their
advancements, many existing approaches still fall short in accuracy and efficiency.

However, these methods are constrained by their reliance on approximations and
significant computational resources. As a result, classical methods often struggle to
accurately model enzyme-substrate interactions, particularly for large, complex systems
such as those involved in phenol degradation. These shortcomings slow down the
discovery of effective enzymes, increase research costs, and delay the implementation of
environmentally beneficial solutions for pollutants like phenol.

Potential Impact of a Quantum Solution
Quantum computing could help to model the complexity of enzyme dynamics, quantum
effects in catalysis, and large conformational spaces more efficiently. In particular
graph-based methods are promising to model enzyme-substrate interactions. In this
reformulation of the molecular docking problem, the binding interaction graph
represents potential contacts between the enzyme and the phenol molecule, with each
vertex corresponding to a possible interaction point and edges indicating compatible
interactions. The complexity of this graph problem is a key factor in why classical methods
struggle and why quantum computing offers a potential advantage. Finding the
maximum clique or dense subgraph in a large graph is known to be NP-hard, meaning
that the required computational resources grow exponentially with the size of the graph
for classical algorithms. This exponential scaling makes it infeasible to solve these
problems exactly for large molecular systems using classical computers.

Quantum computing, specifically the Boson Sampling approach, offers a way to address
this complexity, through single photons identifying dense subgraphs [18]. The quantum
nature of the computation could allow for the exploration of the vast solution space more
efficiently than classical algorithms. This approach is particularly well suited for
implementation on near-term photonic quantum computers.
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In addition, fermionic simulations could be leveraged to compute the binding energies of
these docking sites. Quantum algorithms such as the Variational Quantum Eigensolver
(VQE), are well-suited to modelling the electronic structure of molecular systems in the
near-term devices. By accurately evaluating the binding energies of the dense subgraphs
generated by Boson Sampling, configurations could be prioritised based on their
energetic stability. 

A small-scale proof of concept could be run on existing photonic quantum processors,
while simulations on GPU-enhanced classical simulators would help to study the scaling
of the proposed method for larger systems, providing insights into the potential
advantages as we move to more complex enzymes and substrates. With steady
advancement of the quantum processors, moderately sized molecules relevant to phenol
degradation could be studied to ultimately implement full-scale analyses of complex
enzyme-pollutant interactions. 

Quantum computing could enable more accurate and faster predictions of
enzyme-substrate interactions, leading to better candidate identification for phenol
degradation. This, in turn, could accelerate the development of sustainable
bioremediation methods, reduce experimental costs, and offer scalable solutions for
tackling industrial pollutants, directly aligning with environmental and industrial goals.
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SDG 7 – Affordable and Clean Energy

Layout of Turbines in a Wind Farm

SHORT SUMMARY
Quantum optimization solution to efficiently layout
turbines in a wind farm and maximise the power
produced.

TEAM ORIGINS

APPROACH
Combinatorial optimisation (quantum-inspired)

Context
Climate change is a global crisis– as the climate becomes increasingly unstable, we can
expect more extreme weather events, rising sea levels, and the loss of critical habitats
worldwide. A primary driver of climate change is the emissions generated from the
burning of fossil or biomass fuels. To combat this, we must look for more renewable ways
to produce energy, cutting back our reliance on emission-producing fuels.

According to the United Nations, the world still faces significant challenges in achieving
universal energy by 2030; improving the efficiency of wind farms directly supports this
goal, by providing a more reliable and cost-effective source of renewable energy. This can
help increase energy accessibility, particularly in regions with limited electricity, and
contribute to global efforts to meet SDG 7 [1]. Wind energy offers significant potential to
reduce our reliance on fossil fuels and mitigate the negative impacts on the environment.
By improving the efficiency of wind farms, we can do our part to work towards a
sustainable future. This also enables a move towards two urgent targets: energy security
and net-zero concerning carbon emissions. Within this, there is a huge increase in wind
power required. The latest European Union target for renewable energy requires more
than doubling wind power generation from 204 GW (2022) to greater than 500 GW (2030)
[2].

Wind farms provide a powerful means for countries to produce independent, clean
energy. The efficiency of these farms is crucial, especially for nations with limited financial
resources, where optimising energy output is vital. Countries like Argentina, Colombia,
Egypt, Indonesia, and Morocco [3], are currently developing wind farms, and will benefit
significantly from improved efficiency as a result. Additionally, wind farms contribute to
infrastructure development and job creation, driving economic growth (SDG 8). Energy
independence also enhances national security and reduces reliance on external sources
(SDG 9).

Despite its potential, there are numerous challenges in making wind energy both
economically viable and reliable [4]. One of the most significant challenges is optimising
the layout of wind farms to maximise energy output. The largest onshore wind farm in the
world is the Jiuquan Wind Power Base, also known as the Gansu Wind Farm, containing
over 7,000 turbines and with a capacity of 10 GW [5]. Choosing the best placement of all
the turbines must account for many factors, including environmental, economic and
infrastructural. This involves complex and computationally intensive optimisation
problems, especially as windfarms grow to such size and complexity.

Computational Challenges
In wind farm layout optimisation (WFLO), one key factor reducing wind farm efficiency is
the wake effect, where upstream turbines disrupt wind flow, and reduce the power
generated by downstream turbines. Modelling these wake effects is difficult, as the model
should include multiple wind regimes and interactions between more than two turbines.
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The Jensen wake model [6] uses the linear superposition expression to accurately capture
these effects, calculating the reduced wind speed downstream in a way that can be
optimised fairly efficiently. Jensen's wake model is simplistic but easy to compute, which
helps during the optimisation process. However, this simplicity ignores some effects,
which in individual cases, can lead to misestimation of the velocities in the wake. Other
models are available, but can sometimes take much longer to compute.

The WFLO problem is solved classically using advanced (Genetic) Random Search
algorithms [7]. These allow for multiple, possibly disconnected, polygons with continuous
turbine placements, which have been tested on cases with hundreds of turbines. The
WFLO that has so far discussed is specific to onshore or fixed offshore wind turbines.
Newer types of turbines, such as floating offshore, have many more degrees of freedom,
meaning that further modelling (and more computationally costly evaluations) is needed.

The classical industry standard for finding high-quality solutions to QUBO problems [8] is
the Gurobi optimisation software [9]. The precise working of this algorithm is not open
source, although it is known to use multiple different algorithms as well as intelligent
initial condition selection.

Potential Impact of a Quantum Solution
Quantum computers may offer a way to find high-quality windfarm configurations faster
or more accurately than classical approaches. To address WFLO using quantum
computing, wind farms can be discretised into a grid and mapped to a quadratic
unconstrained binary optimisation (QUBO) problem. Once in this form, the search space
grows exponentially with the number of variables, a characteristic that quantum
computers can naturally handle by scaling resources linearly, allowing the problem to
scale more efficiently on quantum hardware. This QUBO formulation follows previous
work for this problem’s application to quantum annealers, which allows us to leverage
quantum computing through two variational mappings: Hamiltonian and Pauli
correlation encoding (PCE).

Using the Hamiltonian mapping, the QUBO problem is transformed into a distinct
diagonal Ising Hamiltonian, with its ground state corresponding to our solution as a basis
state. When applying the PCE-based method, we map binary variables to the expected
values of correlation variables, which can independently range from -1 to 1. Due to their
independent variability, we can find a combination that solves the QUBO problem in its
spin form. The PCE mapping allows us to have N correlation variables, where N can exceed
the number of qubits.

Alongside these variational approaches, quantum annealers are purpose-built machines
for QUBO problems, and they might also offer an efficient quantum methodology. We
must investigate these to test their relative performance, including issues such as qubit
connectivity. Finding high-quality solutions faster will allow better fine-tuning and
improved efficiency, leading to a greater share of energy from renewable sources.

There are very few studies that report on the potential use of quantum computers to solve
the WFLO problem. The goal is to compare these quantum methods with the
industry-standard Gurobi, breaking down their effectiveness on real-world problems,
where optimal and near-optimal solutions are crucial. By investigating the scalability of
these algorithms, we can evaluate their future usefulness, providing a foundational step in
their development. Specifically, comparing approaches with higher qubit counts but
smaller parameter spaces versus larger parameter spaces with fewer qubits will help
guide the direction of future algorithms.

As part of assessing the usefulness of quantum computing for this optimisation use case
with potential impact in transitioning to renewable energy sources, one would also need
to explore high-performance computing, including the potential for parallelising the
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optimisation process. Tests could be done on circuit-based algorithms on digital quantum
processors as well as on quantum annealers. Short term, a standard test case of a 10x10
grid size, requiring 100 qubits for the VQE and ~ 8 qubits for the PCE. Longer term, these
high qubit/high gate count circuits would require investigations into error mitigation.
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Smart Grid Management

SHORT SUMMARY
Quantum optimisation solution to improve the
management of large energy grids and efficiently
distribute energy.

TEAM ORIGINS

APPROACH
Combinatorial optimisation (quantum-inspired)

Context
Meeting the world’s increasing energy demands while incorporating renewable sources
for a sustainable future requires efficient and reliable management of electrical grids [4].
By optimising grid management, it is possible to better integrate renewable energy
sources, reduce energy losses, and ensure a stable supply of electricity. This is crucial for
providing affordable energy and a stable power supply to all, especially in areas with
growing energy demands; supporting the transition to sustainable energy systems.
According to a report by the US Department of Energy [1], grid modernisation efforts have
shown potential for significant improvements in energy efficiency and reliability. This
challenge relates to SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation, and
Infrastructure), and SDG 13 (Climate Action). In particular, within SDG 7 it directly aligns
with target 7.3 to “Double the improvement in energy efficiency” and target 7.5 to “expand
and upgrade energy services for developing countries” [2].

The International Energy Agency (IEA) has also highlighted the importance of electricity
grid improvements in their report on ‘Electricity Grids and Secure Energy Transitions’ [3].
The IEA report emphasises the critical role of grids in clean energy transitions and stresses
the need for adding or refurbishing over 80 million kilometres of grids by 2040, equivalent
to the entire existing global grid. This expansion is essential to decarbonise electricity
supply and effectively integrate renewables. The IEA also notes that modern and digital
grids are vital to clean energy transitions, as the need for system flexibility is expected to
double between 2022 and 2030, in order to meet national climate goals.

Smart grid management is a cornerstone of modern infrastructure, supporting the
development of resilient infrastructure by enhancing the grid's ability to adapt to
real-time supply, demand fluctuations and integrate various energy sources.

The challenge of efficient grid management is global in nature, affecting both developed
and developing countries. In developing nations, improved grid management can lead to
more reliable access to electricity, supporting economic growth and quality of life
improvements for millions of people. By optimising the integration and management of
renewable energy, this use case would help mitigate the impact of climate change.

Computational Challenges
Currently, smart grid management problems are approached using various classical
computational methods [4].

1. Linear and Mixed-Integer Programming: Used for solving resource allocation and
scheduling problems.

2. Heuristic Algorithms: Such as genetic algorithms and particle swarm optimization,
used for multi-objective optimization problems.

3. Machine Learning: For demand forecasting and anomaly detection in grid
operations.

These computational models are useful because they allow for simulation of complex grid
scenarios, optimisation of resource allocation, and prediction of demand and supply
fluctuation. Available datasets typically include historical and real-time power
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consumption data, weather data for renewable energy forecasting, grid topology, and
capacity information–alongside energy market pricing data.

Many optimisation problems in grid management, such as resource allocation or power
flow optimisation, are NP-hard problems, meaning that as the size of the problem
increases, the computational resources required to solve it classically grow exponentially.
These methods struggle with the complexity and scale of modern power systems,
especially when integrating large-scale renewable energy sources. The main challenges
include:

● Real-time optimisation: Classical methods often struggle to provide optimal
solutions in real-time for large-scale grid systems.

● Handling uncertainty: Renewable energy sources introduce significant uncertainty,
which is difficult to model and optimise using classical methods.

● Multi-objective optimisation: Balancing conflicting objectives like cost
minimisation, emission reduction, and stability maximisation is computationally
intensive.

The introduction of quantum computing could offer new possibilities to address the
challenges mentioned above. Quantum algorithms have the potential to explore larger
solution space, providing more efficient solutions for complex grid optimisation problems.

Potential Impact of a Quantum Solution
One quantum approach is to use a Quantum Approximate Optimisation Algorithm
(QAOA) [4] for combinatorial optimisation tasks, such as resource allocation and
scheduling in grid management. Nested algorithms like HHL [5] within QAOA [6] could be
used when linear systems need to be solved as part of the larger optimisation problem, for
example in power flow calculations.

While the full potential of QAOA is still being explored, recent research suggests it may
offer usefulness for certain optimisation problems. A study of benchmarking quantum
algorithms for combinatorial optimisation provides insights into the comparative
performance of different approaches [6, 7], anticipating that a first implementation could
be anticipated on near-term devices. A nested variational quantum algorithm approach
–such as QAOA in QAOA [9] and HHL in QAOA [10]–would allow for both the use of hybrid
algorithm approaches and the ability to parallelise compute tasks. This would enable
larger quantum algorithms to be subdivided and calculated among multiple quantum
hardware simultaneously or single quantum hardware sequentially, allowing for larger
quantum algorithms to be developed and executed without the necessity of having larger
quantum hardware to run them on.

In the short term, quantum optimisation tools [11, 12] that incorporate these hybrid
approaches could be leveraged to explore the potential impact on the efficiency of smart
grid management.
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SDG 13 – Climate Action

Catalytic Carbon Capture

SHORT SUMMARY
Quantum machine learning solution to enhance
chemical catalysis, reduce the carbon footprint of
catalytic processes and refine carbon capture
technologies.

TEAM ORIGINS

APPROACH
Machine Learning (quantum-inspired)

Context
Climate change is one of the most pressing global challenges, posing significant threats
to ecosystems, human health, and economies worldwide. A primary contributor to climate
change is the excessive concentration of carbon dioxide (CO₂) in the atmosphere, mainly
from fossil fuel combustion, industrial activities, and deforestation [1]. The rise in CO₂ levels
has led to a rapid increase in global temperatures, resulting in extreme weather events,
rising sea levels, and disruptions to food and water supplies [2]. Addressing this challenge
is crucial for ensuring environmental sustainability, economic stability, and social
wellbeing.

The Paris Agreement, adopted under the United Nations Framework Convention on
Climate Change (UNFCCC), aims to limit the global temperature increase to well below
2°C, with efforts to keep it to 1.5°C above pre-industrial levels [3]. Achieving these goals
requires significantly reducing greenhouse gas emissions, of which carbon capture
technologies play a critical role. According to the International Energy Agency (IEA) [4],
Carbon Capture, Utilisation and Storage (CCUS) technology is expected to contribute to
15% of the cumulative reduction in CO₂ emissions needed to meet global climate targets
by 2070; highlighting the necessity of scaling up these technologies to meet the
ambitious goals of the Paris Agreement. The importance of these efforts has been further
emphasised in recent discussions, such as those at COP28, where the Global Climate
Action agenda highlighted the critical role of innovative technologies in achieving these
objectives [5]. Carbon capture technologies are seen as a key component of global
strategies to reduce emissions, particularly in sectors where decarbonisation is
challenging, such as heavy industry and power generation.

The societal challenge of excessive CO₂ emissions affects populations globally, with
particularly severe impacts in regions with high industrial activity and vulnerable
ecosystems. Populations in urban areas with dense industrialisation, such as those in
developing countries, face increased health risks from air pollution and climate
change-related disasters. Additionally, small island and coastal communities are
disproportionately affected by rising sea levels and extreme weather events, resulting
from increased atmospheric CO₂ concentrations.

This use case seeks to address these challenges by focusing on two critical areas: (i) the
development of advanced chemical catalysis techniques to make industrial processes
more energy efficient, directly reducing the amount of CO₂ emitted, and (ii) the
optimisation of carbon capture methods from sources like power plants and industrial
facilities and prevent them from entering the atmosphere.
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Computational Challenges
A major challenge in developing sustainable catalytic processes lies in accurately
modelling molecular interactions at the atomic level. Classical computational methods
are valuable for providing insights into molecular interactions and optimising materials,
but they come with significant limitations. Density Functional Theory (DFT) is a widely
used computational method for this purpose. In catalysis, DFT is crucial for predicting the
adsorption energy of molecules on catalyst surfaces, a key metric for understanding and
improving catalyst performance. By simulating different molecular configurations on
these surfaces, DFT helps identify optimal catalysts that can enhance reaction efficiency
and sustainability. However, the accuracy of Density Functional Theory (DFT) is often
constrained by the approximations inherent in classical models, which can lead to
potential inaccuracies in predicting molecular behaviours. Additionally, the computational
power required to model large and complex systems is immense, which can be
prohibitive and slow down the pace of discovery and innovation.

Metal-organic frameworks (MOFs) have emerged as promising materials for Direct Air
Capture (DAC) due to their tunable structures [6]. The performance of existing absorbents
and adsorbents is often limited by their capacity, selectivity, and regeneration efficiency,
presenting further challenges in making DAC a viable and scalable solution for carbon
reduction. However, identifying and optimising MOFs involves navigating a vast space of
possible configurations, which is a complex and resource-intensive task [7].

One way to tackle this challenge is by using Generative Adversarial Networks (GANs),
which consist of two competing neural networks—a generator and a
discriminator—working together to produce data that mimics real-world distributions. A
main limitation of classical computing, particularly with GANs, is their inability to explore
certain regions of the chemical space due to the vast size of the search space. Classical
GANs often struggle with training instabilities and require a substantial amount of
computational resources to model such large spaces accurately. This limitation hinders
the effective discovery and optimisation of novel materials, as these models may converge
on suboptimal solutions or fail to capture the underlying chemical complexity fully.

Obviously, for any data-driven approach, high-quality datasets are essential for model
performance. Such examples of datasets are from the SwissCAT+ [8], the GDB-17 [9], and
The Open Catalyst Project (OCP) [10] initiatives.

Potential Impact of a Quantum Solution
Quantum computing [11], particularly through the Quantum Generative Adversarial
Networks (QGANs) method [12], could offer a promising alternative. QGANs could help
overcome the classical limitations in the ability to explore certain regions of chemical
space or the training instabilities due to the vast search space [13, 14]. Instead of relying
solely on classical DFT calculations, QGANs could be employed to generate new chemical
catalysts and MOFs more efficiently. The quantum component in QGANs could allow for
the creation of quantum layers and leverages the inherent indeterministic properties of
quantum mechanics to generate the necessary noise for the generative network,
enhancing the ability to explore vast chemical spaces and identify novel materials. One
could anticipate that currently available quantum devices could accommodate a first
small-scale proof of concept.

As explored for carbon fixation process [14], leveraging quantum computing for carbon
capture - in this case leveraging QGANs for chemical catalysts and MOFs - could provide
accuracy gains in the modelisation of the chemical processes involved and thus lead to
more efficient CO₂ reduction in the fight against climate change.
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